Real-time detection of rice phenology through convolutional neural network using handheld camera images

Robustness Digital camera
DOI: 10.1007/s11119-020-09734-2 Publication Date: 2020-06-28T08:04:36Z
ABSTRACT
Smallholder farmers play an important role in the global food supply. As smartphones become increasingly pervasive, they enable smallholder farmers to collect images at very low cost. In this study, an efficient deep convolutional neural network (DCNN) architecture was proposed to detect development stages (DVS) of paddy rice using photographs taken by a handheld camera. The DCNN model was trained with different strategies and compared against the traditional time series Green chromatic coordinate (time-series Gcc) method and the manually extracted feature-combining support vector machine (MF-SVM) method. Furthermore, images taken at different view angles, model training strategies, and interpretations of predictions of the DCNN models were investigated. Optimal results were obtained by the DCNN model trained with the proposed two-step fine-tuning strategy, with a high overall accuracy of 0.913 and low mean absolute error of 0.090. The results indicated that images taken at large view angles contained more valuable information and the performance of the model can be further improved by using images taken at multiple angles. The two-step fine-tuning strategy greatly improved the model robustness against the randomness of view angle. The interpretation results demonstrated that it is possible to extract phenology-related features from images. This study provides a phenology detection approach to utilize handheld camera images in real time and some important insights into the use of deep learning in real world scenarios.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (44)