A computationally efficient selected mapping technique for reducing PAPR of OFDM

Companding Distortion (music)
DOI: 10.1007/s11235-016-0257-0 Publication Date: 2016-12-20T14:36:17Z
ABSTRACT
In orthogonal frequency division multiplexing (OFDM) system, high value of peak-to-average power ratio (PAPR) is an operational problem that may cause non-linear distortion resulting in high bit error rate. Selected mapping (SLM) is a well known technique that shows good PAPR reduction capability but inflicts added computational overhead. In this paper, using Riemann sequence based SLM method, we applied reverse searching technique to find out low PAPR yielding phase sequences with significant reduction in computational complexity. Additionally, we explored side-information free transmission that achieves higher throughput but sacrifices PAPR reduction. Finally, to overcome this loss in PAPR reduction, we proposed application of Square-rooting companding technique over the output OFDM transmitted signal. Simulation results show that the proposed method is able to compensate the sacrifice in PAPR and achieved PAPR reduction of 8.9 dB with very low computational overhead.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (27)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....