Salicylic acid-induced cytosolic acidification increases the accumulation of phenolic acids in Salvia miltiorrhiza cells

0303 health sciences 03 medical and health sciences
DOI: 10.1007/s11240-016-1001-x Publication Date: 2016-04-28T16:11:05Z
ABSTRACT
Salicylic acid (SA) is an elicitor widely used to promote the synthesis of secondary metabolites. In order to determine the relevance between SA-induced pH changes and secondary metabolite synthesis, Salvia miltiorrhiza suspension cells were exposed to either SA, fusicoccin (FC), sodium orthovanadate (OVA), methylamine (ME) and their combination (FC+SA and ME+SA) for investigating the effect of cytosolic pH change on phenolic acids production, such as caffeic acid (CA), rosmarinic acid (RA), and salvianolic acid B (Sal B). The variations of cytosolic pH were sensed by using the fluorescent probe BCECF-AM, and combination with laser scanning confocal microscopic technique. Meanwhile, the genes expression of phenylalanine ammonia-lyase (PAL), tyrosine aminotransferase (TAT), and rosmarinic acid synthase (RAS) were determined using real time PCR. The contents of CA, RA, and Sal B were measured by high performance liquid chromatography. The results showed that SA decreased the cytosolic pH by inhibiting the activity of plasma membrane H+-ATPase. OVA induced cytosolic acidification too, while both FC and ME inhibited the acidification induced by SA. SA also up-regulated the genes expression of TAT, PAL, and RAS, and as a result enhanced the accumulation of those phenolic acids.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (32)