The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: implications for treeline advance with climate warming

Seedbed Ecotone
DOI: 10.1007/s11258-010-9724-y Publication Date: 2010-01-28T06:09:39Z
ABSTRACT
Thermal control of treeline position is mediated by local environmental and ecological factors, making trends in treeline migration difficult to extrapolate geographically. We investigated the ecological dynamics of conifer establishment at treeline in the Mealy Mountains (Labrador, Canada) and the potential for its expansion with climate warming. Available seedbed and tree seedling emergence in the treeline ecotone were monitored, and seeds and seedlings of Picea mariana were planted along an elevational gradient from open-canopy forest through tree islands to alpine tundra. Experimental treatments included passive warming of daytime air, ground disturbance, and vertebrate herbivore exclosures. Responses in seed germination and seedling growth, damage, and mortality were monitored over two growing seasons, and re-surveyed after 5 years. While no tree seedlings were observed growing naturally above the treeline, planted seeds were able to germinate, develop and overwinter, and persist for 4 years in all habitats examined. Disturbance of the seedbed was important for seedling emergence in the forest and tree islands. While temperature enhancement alone had little impact on emergence, even moderate temperature increases had significantly disproportionate effects on emergence of seedlings in the alpine habitat when combined with soil disturbance, indicating that future climate warming could lead to treeline advance if viable seed and suitable substrate for recruitment are available. The positive effect of excluding herbivores suggests that herbivory may be an important filter modifying future species distribution. While seedbed conditions and herbivory would control the rate of individual species advance, the results indicate potential upslope migration of the treeline in the Mealy Mountains, with consequent loss of alpine ecosystems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (103)