Distribution-Sensitive Information Retention for Accurate Binary Neural Network

Representation
DOI: 10.1007/s11263-022-01687-5 Publication Date: 2022-10-02T07:02:33Z
ABSTRACT
Model binarization is an effective method of compressing neural networks and accelerating their inference process. However, a significant performance gap still exists between the 1-bit model and the 32-bit one. The empirical study shows that binarization causes a great loss of information in the forward and backward propagation. We present a novel Distribution-sensitive Information Retention Network (DIR-Net) that retains the information in the forward and backward propagation by improving internal propagation and introducing external representations. The DIR-Net mainly relies on three technical contributions: (1) Information Maximized Binarization (IMB): minimizing the information loss and the binarization error of weights/activations simultaneously by weight balance and standardization; (2) Distribution-sensitive Two-stage Estimator (DTE): retaining the information of gradients by distribution-sensitive soft approximation by jointly considering the updating capability and accurate gradient; (3) Representation-align Binarization-aware Distillation (RBD): retaining the representation information by distilling the representations between full-precision and binarized networks. The DIR-Net investigates both forward and backward processes of BNNs from the unified information perspective, thereby providing new insight into the mechanism of network binarization. The three techniques in our DIR-Net are versatile and effective and can be applied in various structures to improve BNNs. Comprehensive experiments on the image classification and objective detection tasks show that our DIR-Net consistently outperforms the state-of-the-art binarization approaches under mainstream and compact architectures, such as ResNet, VGG, EfficientNet, DARTS, and MobileNet. Additionally, we conduct our DIR-Net on real-world resource-limited devices which achieves 11.1x storage saving and 5.4x speedup.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (100)
CITATIONS (66)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....