Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments

Brain Mapping 03 medical and health sciences 0302 clinical medicine Psychometrics Brain Humans Bayes Theorem 0101 mathematics Magnetic Resonance Imaging 01 natural sciences 3. Good health
DOI: 10.1007/s11336-020-09727-0 Publication Date: 2020-09-19T07:03:34Z
ABSTRACT
Brain activation and connectivity analyses in task-based functional magnetic resonance imaging (fMRI) experiments with multiple subjects are currently at the forefront of data-driven neuroscience. In such experiments, interest often lies in understanding activation of brain voxels due to external stimuli and strong association or connectivity between the measurements on a set of pre-specified groups of brain voxels, also known as regions of interest (ROI). This article proposes a joint Bayesian additive mixed modeling framework that simultaneously assesses brain activation and connectivity patterns from multiple subjects. In particular, fMRI measurements from each individual obtained in the form of a multi-dimensional array/tensor at each time are regressed on functions of the stimuli. We impose a low-rank parallel factorization decomposition on the tensor regression coefficients corresponding to the stimuli to achieve parsimony. Multiway stick-breaking shrinkage priors are employed to infer activation patterns and associated uncertainties in each voxel. Further, the model introduces region-specific random effects which are jointly modeled with a Bayesian Gaussian graphical prior to account for the connectivity among pairs of ROIs. Empirical investigations under various simulation studies demonstrate the effectiveness of the method as a tool to simultaneously assess brain activation and connectivity. The method is then applied to a multi-subject fMRI dataset from a balloon-analog risk-taking experiment, showing the effectiveness of the model in providing interpretable joint inference on voxel-level activations and inter-regional connectivity associated with how the brain processes risk. The proposed method is also validated through simulation studies and comparisons to other methods used within the neuroscience community.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....