Nickle(II) ions exacerbate bleomycin-induced pulmonary inflammation and fibrosis by activating the ROS/Akt signaling pathway
0301 basic medicine
Cell Survival
Pulmonary Fibrosis
Pneumonia
Mice, Inbred C57BL
Bleomycin
Disease Models, Animal
Mice
03 medical and health sciences
A549 Cells
Nickel
Animals
Humans
Particulate Matter
Reactive Oxygen Species
Proto-Oncogene Proteins c-akt
Signal Transduction
DOI:
10.1007/s11356-017-0525-x
Publication Date:
2017-11-28T04:28:12Z
AUTHORS (9)
ABSTRACT
Nickle (Ni) is a heavy metal found in particulate matter. We previously reported that Ni ions are strongly associated with high apoptosis rates and high expression of IL-1β in human bronchial epithelial cells following exposure to PM2.5; however, the effects of Ni ions on pulmonary fibrosis have not been fully elucidated. In the current study, we evaluated whether Ni ions can exacerbate bleomycin (BLM)-induced pulmonary fibrosis in a mouse model and illustrated the potential mechanism. Ni ions inhibited cell proliferation and induced apoptosis in A549 and MRC-5 cells. BLM-induced lung injury and fibrosis in mice were significantly enhanced by nickel treatment, and these findings were also supported by inflammatory cell accumulation in bronchoalveolar lavage fluid and elevated levels of pro-inflammatory cytokines in lung tissues. Ni ions also increased extracellular matrix protein levels, including those of type I collagen and MMP9 in mouse lung tissues and cell lines. Moreover, Ni ions promoted the phosphorylation of AKT in this mouse model. The effect of increased collagen levels and MMP9 expression was inhibited by blocking the AKT phosphorylation. Together, these findings suggest AKT activation as a critical contributor to this Ni-exacerbated pulmonary fibrotic process.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (24)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....