Bioaccumulation of heavy metals in the lotus root of rural ponds in the middle reaches of the Yangtze River

0106 biological sciences 13. Climate action 11. Sustainability 15. Life on land 01 natural sciences 6. Clean water 3. Good health
DOI: 10.1007/s11368-017-1692-6 Publication Date: 2017-04-05T18:39:43Z
ABSTRACT
The subject of this study is the sediment and wild lotus plants in unmanaged ponds, near Yichang City, contaminated by heavy metals. The objective is to determine the extent and frequency of heavy metal accumulation by lotus root in the ponds of rural areas and its significance to food safety and human health. The study area is located in the middle reaches of Yangtze River. The 11 sampling sites selected (Z1–Z11) were unmanaged ponds, and the lotus root samples were from wild plants. The lotus root and soil samples were processed using wet digestion, according to the national standard method; we tested concentration of heavy metal (Pb, Cd, Cr, As, Cu, and Zn). Both a single-factor index and an integrated pollution index were used to assess the heavy metal pollution of soil and wild lotus root. Correlation was used to examine the relationship of lotus root concentration to sediment concentration for each heavy metal. Cadmium (Cd) and arsenic (As) in both soil and pond sediment exceeded standards. The maximum single pollution index (SPI) for Cd and As was 1.16 and 1.15, respectively. The maximum integrated pollution index (IPI) for heavy metals was 2.17 for soil and 2.10 for sediment (moderate pollution). The heavy metal content in some samples of lotus root exceeded the national food standard and pose a health risk. The significant correlations of heavy metal concentrations (Pb, Cd, and As) in pond sediment with those in the surrounding soil show that the ponds act as sinks for agricultural nonpoint source pollution (NPS). The heavy metal concentrations in the peel of the edible tuber were 1.3∼9.0 times higher than those in the inner flesh. While Cd, Pb, and As concentrations in the sediment did not violate soil standards, concentrations in the lotus root did violate food standards. This species could be proposed as a suitable heavy metal bioindicator for the early stages of pollution from agricultural NPS.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....