Ferroelectric materials, devices, and chips technologies for advanced computing and memory applications: development and challenges
DOI:
10.1007/s11432-025-4432-x
Publication Date:
2025-05-29T00:34:30Z
AUTHORS (40)
ABSTRACT
Abstract
Hafnium (Hf) oxide-based ferroelectric materials have emerged as a transformative platform for next-generation non-volatile memory and advanced computing technologies. This review comprehensively examines the development, challenges, and applications of HfO2 ferroelectrics, emphasizing their CMOS compatibility, scalability, and robust polarization at nanoscale dimensions. Breakthroughs in doping strategies, stress engineering, and VO control have stabilized the metastable orthorhombic phase, enabling high-performance devices such as ferroelectric RAM (FeRAM), ferroelectric field-effect transistors (FeFETs), and ferroelectric tunnel junctions (FTJs). These devices offer ultrafast switching, low power consumption, and multi-level storage, driving innovations in neuromorphic computing, in-memory processing, and cryogenic systems; nonetheless, they face ongoing challenges in reliability, such as fatigue and imprint effects, and scalability at sub-5 nm technology nodes. Emerging frontiers, such as wurtzite-structured nitrides (e.g., AlScN) and antiferroelectric ZrO2-based systems, have garnered significant attention due to their exceptionally high remanent polarization and promising potential for enhanced endurance, respectively. Further addressing the reliability issues of these emerging ferroelectric materials and the challenges associated with large-scale integration processes through interdisciplinary efforts will unlock the full potential of ferroelectric technologies, positioning them as pivotal enablers of post-Moore computing architectures and sustainable AI-driven applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (380)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....