Absence of metallicity and bias-dependent resistivity in low-carrier-density EuCd2As2
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Materials Science (cond-mat.mtrl-sci)
FOS: Physical sciences
DOI:
10.1007/s11433-023-2283-0
Publication Date:
2024-03-12T21:22:41Z
AUTHORS (13)
ABSTRACT
13 pages, 4 figures<br/>EuCd2As2 was theoretically predicted to be a minimal model of Weyl semimetals with a single pair of Weyl points in the ferromagnet state. However, the heavily p-doped EuCd2As2 crystals in previous experiments prevent direct identification of the semimetal hypothesis. Here we present a comprehensive magneto-transport study of high-quality EuCd2As2 crystals with ultralow bulk carrier density (10^13 cm-3). In contrast to the general expectation of a Weyl semimetal phase, EuCd2As2 shows insulating behavior in both antiferromagnetic and ferromagnetic states as well as surface-dominated conduction from band bending. Moreover, the application of a dc bias current can dramatically modulate the resistance by over one order of magnitude, and induce a periodic resistance oscillation due to the geometric resonance. Such nonlinear transport results from the highly nonequilibrium state induced by electrical field near the band edge. Our results suggest an insulating phase in EuCd2As2 and put a strong constraint on the underlying mechanism of anomalous transport properties in this system.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....