Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy during Conventional Hot-Compression Deformation
02 engineering and technology
0210 nano-technology
DOI:
10.1007/s11661-009-9879-0
Publication Date:
2009-06-19T13:05:39Z
AUTHORS (5)
ABSTRACT
In order to examine the microstructural evolution during hot-compression deformation of the biomedical Co-29Cr-6Mo (weight percent) alloy without the addition of Ni, hot-compression tests have been conducted at deformation temperatures ranging from 1050 °C to 1200 °C at various strain rates of 10−3 to 10 s−1. The grain refinement due to dynamic recrystallization (DRX) was identified under all deformation conditions by means of field-emission scanning electron microscopy/electron backscattered diffraction (FESEM/EBSD) and transmission electron microscopy (TEM) observations. Although the DRX grain size (d) of the deformed specimens considerably decreased with an increasing Zener–Hollomon (Z) parameter at strain rates ranging from 10−3 to 0.1 s−1, a grain size coarser than that predicted from the d-Z relation was obtained at strain rates of 1.0 and 10 s−1. An ultrafine-grained microstructure with a grain size of approximately 0.6 μm was obtained under deformation at 1050 °C at 0.1 s−1, from an initial grain size of 40 μm. The grain refinement to a submicron scale of biomedical Co-Cr-Mo alloys has been achieved with hot deformation by ~60 pct due to DRX, in which the bulging mechanism is not operative. The ultrafine grains obtained due to DRX without bulging is closely related to the considerably low stacking-fault energy (SFE) of the Co-Cr-Mo alloy at deformation temperatures.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (115)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....