Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation
Tetragonal crystal system
Nanometre
DOI:
10.1007/s11664-016-4438-0
Publication Date:
2016-03-09T20:16:06Z
AUTHORS (6)
ABSTRACT
Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....