Creep Behavior of ABS Polymer in Temperature–Humidity Conditions

Acrylonitrile butadiene styrene
DOI: 10.1007/s11665-017-2680-0 Publication Date: 2017-04-20T14:47:18Z
ABSTRACT
Acrylonitrile-Butadiene-Styrene (ABS), also known as a thermoplastic polymer, is extensively utilized for manufacturing home appliances products as it possess impressive mechanical properties, such as, resistance and toughness. However, the aforementioned properties are affected by operating temperature and atmosphere humidity due to the viscoelasticity property of an ABS polymer material. Moreover, the prediction of optimum working conditions are the little challenging task as it influences the final properties of product. This present study aims to develop the finite element (FE) models for predicting the creep behavior of an ABS polymeric material. In addition, the material constants, which represent the creep properties of an ABS polymer material, were predicted with the help of an interpolation function. Furthermore, a comparative study has been made with experiment and simulation results to verify the accuracy of developed FE model. The results showed that the predicted value from FE model could agree well with experimental data as well it can replicate the actual creep behavior flawlessly.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (22)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....