Fine Secondary α Phase-Induced Strengthening in a Ti-5.5Al-2Zr-1Mo-2.5V Alloy Pipe with a Widmanstätten Microstructure
0205 materials engineering
02 engineering and technology
DOI:
10.1007/s11665-020-04715-y
Publication Date:
2020-03-11T17:04:32Z
AUTHORS (5)
ABSTRACT
In this paper, the Widmanstatten microstructure in an extruded near-α titanium alloy (Ti-5.5Al-2Zr-1Mo-2.5V) pipe was changed effectively by solid solution treatment at 920 °C for 2 h. The treatment produced intermittent lamellar α and discontinuous α grain boundaries (αGB), and aging at 450 °C for 2 h introduced a high density of nanosized secondary α (αs). The microstructure consisted of the lamellar α, αGB and transformed β demonstrated a good combination of yield strength 1064 MPa and elongation 10.5%. Severe plastic deformation occurred inside the lamellar α during the tensile process, resulting in high-density dislocation tangles and dislocation cells. Furthermore, the stretching imposed on the tensile sample before aging generated dislocations, which piled up near the α/β interface. Thus, a coordinated deformation between lamellar α and transformed β, and the resultant strain partition contributed to an improvement in the ductility. Moreover, dislocation motion was effectively obstructed near the α/β interfaces, which dramatically strengthened the alloy. A solid solution at a middle temperature in the α + β region and aging at a low temperature provided an effective way to improve the strength and ductility simultaneously in titanium alloys with Widmanstatten microstructure.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....