Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating

02 engineering and technology 0210 nano-technology
DOI: 10.1007/s11666-014-0065-6 Publication Date: 2014-02-07T16:54:33Z
ABSTRACT
6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....