Surface roughness evaluation in hardened materials by pattern recognition using network theory
0203 mechanical engineering
0202 electrical engineering, electronic engineering, information engineering
Machine interactive learning; Robot laser hardening; SEM images; Statistical pattern recognition; Surface roughness; Modeling and Simulation; Industrial and Manufacturing Engineering
02 engineering and technology
Surface roughness, Machine interactive learning, Statistical pattern recognition, Robot laser hardening, SEM images.
DOI:
10.1007/s12008-018-0507-3
Publication Date:
2018-08-01T08:09:18Z
AUTHORS (8)
ABSTRACT
Performance characteristics of the products made of metallic materials such as wear resistance, fatigue strength, stability of gaps and strain between the connections, corrosion resistance, etc., depend to a large extent by the quality of their surfaces roughness. An interactive control of the manufacturing parameters which influence the surface roughness is particularly crucial in the construction of many mechanical components. The present paper devises a new method for statistical pattern recognition on samples produced by the process of robot laser hardening using network theory and describes its application to the determination of surface roughness. The method is based on the analysis of SEM images. Indeed the data characterizing the state of surface irregularities detected as extremely small segments contain indicators of surface roughness. Different methods of machine learning techniques designed to predict the surface roughness of robot laser hardened material are discussed.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....