MiR-124-3p Suppresses Prostatic Carcinoma by Targeting PTGS2 Through the AKT/NF-κB Pathway
Viability assay
DOI:
10.1007/s12033-021-00326-7
Publication Date:
2021-04-25T06:49:58Z
AUTHORS (1)
ABSTRACT
MiR-124-3p had shown its tumor-regulatory properties in different cancers, but its potential roles in prostatic carcinoma had not been clearly understood. This study aimed to explore the roles of miR-124-3p in the regulation of prostatic carcinoma. The expression levels of PTGS2 and miR-124-3p were detected in prostatic carcinoma tissues and cultivated cell lines with qRT-PCR, immunohistochemistry and western blot, respectively. The interaction between miR-124-3p and PTGS2 was verified by the dual-luciferase reporter assay. Western blot, MTT, colony formation and flow cytometry assays were performed to evaluate the mediatory roles of miR-124-3p in prostatic carcinoma cells and the involvement of molecular pathways. Both prostatic carcinoma tissues and cells expressed a lower level of miR-124-3p and a higher level of PTGS2. PTGS2 was confirmed to be a target of miR-124-3p. MiR-124-3p suppressed cell viability, proliferation, migration, invasion and enhanced apoptosis of prostatic carcinoma cells by directly sponging PTGS2 to inhibit the AKT/NF-κB pathway. These findings provided information that miR-124-3p exerted anti-tumor effects in prostatic carcinoma by targeting PTGS2 to inactivate the AKT/NF-κB pathway. MiR-124-3p might have the potential to become an emerging therapeutic target for the treatment of prostatic carcinoma.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....