Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns
0301 basic medicine
0303 health sciences
Sequence Homology, Amino Acid
Arabidopsis Proteins
Molecular Sequence Data
Arabidopsis
Gene Conversion
Oryza
Evolution, Molecular
Magnoliopsida
03 medical and health sciences
Populus
Species Specificity
Gene Expression Regulation, Plant
Multigene Family
Amino Acid Sequence
Sequence Alignment
Conserved Sequence
Genome, Plant
Heat-Shock Proteins
Phylogeny
Plant Proteins
Subcellular Fractions
DOI:
10.1007/s12192-008-0023-7
Publication Date:
2008-04-24T07:52:22Z
AUTHORS (3)
ABSTRACT
The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (66)
CITATIONS (137)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....