Preparation of collagen fiber/CaCO3 hybrid materials and their applications in synthetic paper

Thermal Stability Hybrid material Particle (ecology)
DOI: 10.1007/s12221-014-0519-y Publication Date: 2014-05-07T22:45:16Z
ABSTRACT
The collagen fiber/CaCO3 hybrid materials were successfully prepared via in situ organic-inorganic hybrid technique. The surface morphology, hybrid mechanism, thermal and hydrothermal stability of these materials were investigated, respectively. Scanning electron microscopy (SEM) analysis showed that the size scale and distribution of CaCO3 particles in collagen fiber relied on the concentration of CaCl2. When the CaCl2 was at low concentration, for example 6 wt%, the in-situ produced CaCO3 particles were distributed evenly around the collagen fiber, the particle size could be controlled in the range of 2–4 µm and no apparent coagulation of CaCO3 particles was found. Fourier transform infrared spectroscopy (FTIR) study revealed the interactions between the collagen fiber and CaCO3 particles. The water solubility test and TGA analysis indicated that the solubility of collagen fiber in hot water decreased significantly after hybridization with CaCO3 particles, whereas, the decomposition temperature was improved with increasing of the production of CaCO3 particles. Moreover, the hybrid materials were used in conjunction with polyurethane and CaCO3 powder to fabricate a novel synthetic paper. The result showed that the synthetic paper had good writing and printing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (17)