M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water
Noble metal
Visible spectrum
Methyl orange
Charge carrier
DOI:
10.1007/s12274-015-0824-9
Publication Date:
2015-08-19T19:19:06Z
AUTHORS (5)
ABSTRACT
Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed noble-metal nanoparticles (Au, Pd, Pt) were immobilized on MIL-100(Fe) (denoted M@MIL-100(Fe)) using a facile room-temperature photodeposition technique. The resulting M@MIL-100(Fe) (M = Au, Pd, and Pt) nanocomposites exhibited enhanced photoactivities toward photocatalytic degradation of methyl orange (MO) and reduction of heavy-metal Cr(VI) ions under visible-light irradiation (λ ≥ 420 nm) compared with blank-MIL-100(Fe). Combining these results with photoelectrochemical analyses revealed that noble-metal deposition can effectively improve the charge-separation efficiency of MIL-100(Fe) under visible-light irradiation. This phenomenon in turn leads to the enhancement of visible-light-driven photoactivity of M@MIL-100(Fe) toward photocatalytic redox reactions. In particular, the Pt@MIL-100(Fe) with an average Pt particle size of 2 nm exhibited remarkably enhanced photoactivities compared with those of M@MIL-100(Fe) (M = Au and Pd), which can be attributed to the integrative effect of the enhanced light absorption intensity and more efficient separation of the photogenerated charge carrier. In addition, possible photocatalytic reaction mechanisms are also proposed.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (178)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....