Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites
Nanoclusters
DOI:
10.1007/s12274-020-2715-y
Publication Date:
2020-03-09T16:03:53Z
AUTHORS (8)
ABSTRACT
Atomically precise gold (Au) nanoclusters (NCs) as visible light photosensitizers supported on the substrate for photoredox catalysis have attracted considerable attentions. However, efficient control of their photocatalytic activity and long-term stability is still challenging. Herein, we report a coordination-assisted self-assembly strategy in combination with electrostatic interaction to sandwich Au25(Capt)18 (abbreviated as Au25, Capt = captopril) NCs between an inner core and an outer shell made of UiO-66, denoted as UiO-66@Au25@UiO-66. Notably, the sandwich-like nanocomposite displays significantly enhanced catalytic activity along with an excellent stability when used in the selective photocatalytic aerobic oxidation of sulfide to sulfoxide. As comparison, Au25 NCs simply located at the outer surface or insider matrix of UiO-66 (short as Au25/UiO-66 and Au25@UiO-66) show poor stability and low conversion, respectively. This structure regulated difference in the catalytic performances of three nanocomposites is assigned to the varied distribution of active sites (Au NCs) in metal-organic frameworks (MOFs). This work offers the opportunity for application of nanoclusters in catalysis, energy conversion and even biology.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (64)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....