Fault Detection and Reconstruction for Discrete Nonlinear Systems via Takagi-Sugeno Fuzzy Models

0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology
DOI: 10.1007/s12555-017-0582-4 Publication Date: 2018-10-30T10:52:27Z
ABSTRACT
Observer-based actuator fault detection and sensor fault reconstruction for a class of discrete-time nonlinear systems with actuator and sensor faults are investigated in this paper. A descriptor Takagi-Sugeno (T-S) fuzzy model is employed to construct observer-based systems for the purpose of fault detection and sensor fault reconstruction. Two methods for observer design are proposed. In the first method, the observer gains are computed off-line. In the second method, the observer gains are computed on-line at each iteration. The observer designs are formulated using linear matrix inequalities. Sufficient conditions for the existence of the observer-based fault detection and sensor fault reconstruction systems are provided. Comparative simulation study to illustrate the validity of the proposed methods is performed.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....