Using next-generation sequencing to improve DNA barcoding: lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae)
Sanger sequencing
Halictidae
DNA Barcoding
Amplicon
Ion semiconductor sequencing
DOI:
10.1007/s13592-018-0594-y
Publication Date:
2018-08-31T11:49:54Z
AUTHORS (9)
ABSTRACT
The parallel sequencing of targeted amplicons is a scalable application of next-generation sequencing (NGS) that can advantageously replace Sanger sequencing in certain DNA barcoding studies. It can be used to sequence different PCR products simultaneously, including co-amplified products. Here, we explore this approach by simultaneously sequencing five markers (including the DNA barcode and a diagnostic marker of Wolbachia) in 12 species of Halictidae that were previously DNA barcoded using Sanger sequencing. Consensus sequences were obtained from fresh bees with success rates of 74–100% depending on the DNA fragment. They improved the phylogeny of the group, detected Wolbachia infections (in 8/21 specimens) and characterised haplotype variants. Sequencing cost per marker and per specimen (11.43 €) was estimated to decrease (< 5.00 €) in studies aiming for a higher throughput. We provide guidelines for selecting NGS or Sanger sequencing depending on the goals of future studies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....