Pseudocapacitive sodium storage of Fe1−xS@N-doped carbon for low-temperature operation

Sulfidation Nanosheet Sodium-ion battery
DOI: 10.1007/s40843-019-1220-2 Publication Date: 2019-12-16T09:04:07Z
ABSTRACT
Constructing potential anodes for sodium-ion batteries (SIBs) with a wide temperature property has captured enormous interests in recent years. Fe1−xS, a zero-band gap material confirmed by density states calculation, is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity. Herein, Fe1−xS nanosheet wrapped by nitrogen-doped carbon (Fe1−xS@NC) is engineered through a post-sulfidation strategy using Fe-based metal-organic framework (Fe-MOF) as the precursor. The obtained Fe1−xS@NC agaric-like structure can well shorten the charge diffusion pathway, and significantly enhance the ionic/electronic conductivities and the reaction kinetics. As expected, the Fe1−xS@NC electrode, as a prospective SIB anode, delivers a desirable capacity up to 510.2 mA h g−1 at a high rate of 8000 mA g−1. Additionally, even operated at low temperatures of 0 and −25°C, high reversible capacities of 387.1 and 223.4 mA h g−1 can still be obtained at 2000 mA g−1, respectively, indicating its huge potential use at harsh temperatures. More noticeably, the full battery made by the Fe1−xS@NC anode and Na3V2(PO4)2O2F cathode achieves a remarkable rate capacity (186.8 mA h g−1 at 2000 mA g−1) and an impressive cycle performance (183.6 mA h g−1 after 100 cycles at 700 mA g−1) between 0.3 and 3.8 V. Such excellent electrochemical performance is mainly contributed by its pseudocapacitive dominated behavior, which brings fast electrode kinetics and robust structural stability to the whole electrode.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (40)