Energy Harvesting from Ultra-low-Frequency Vibrations Through a Quasi-zero Stiffness Electromagnetic Energy Harvester
Harmonic balance
Oscillation (cell signaling)
Restoring force
DOI:
10.1007/s42417-022-00753-z
Publication Date:
2022-10-22T15:04:15Z
AUTHORS (5)
ABSTRACT
Purpose: To scavenge vibrational energy from ultra-low frequency vibrations with low excitation levels, this paper presents a novel quasi-zero stiffness electromagnetic energy harvester (QZS-EMEH) by exploiting a rolling magnet system. Methods: By calculating the nonlinear restoring force exerted on the moving magnet, the parameter region that results in conditions of quasi-zero stiffness is determined, and a theoretical model of the QZS-EMEH is established. Based on the method of harmonic balance, the analytical solution of the QZS-EMEH is derived, and the influence of system parameters on the response characteristics and energy harvesting performance is discussed. Results: Numerical and theoretical results indicate that the QZS-EMEH can efficiently harness energy in a wide frequency range under low-level excitations. Furthermore, the nonlinear dynamics of the QZS-EMEH are investigated based on the bifurcation diagram, phase orbit, Poincaré map, and basin of attraction, demonstrating that appropriate initial conditions can lead to the high-energy orbit oscillation. Conclusions: Finally, realistic ambient vibration accelerations from a bus and a human body are applied to excite the QZS-EMEH, and the results illustrate that the QZS-EMEH can generate considerable electrical output power and has excellent application prospects.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....