Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
0101 mathematics
01 natural sciences
DOI:
10.1007/s44198-022-00098-x
Publication Date:
2022-12-26T05:02:55Z
AUTHORS (4)
ABSTRACT
Abstract In this paper, we investigate the existence, number and stability of periodic orbits for following contact Hamiltonian system $$H(p,q,s,t)=\frac{p^{2}}{2m}+G(t,q,m)-mdq+cs(c>0)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mi>s</mml:mi> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>m</mml:mi> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>G</mml:mi> <mml:mo>-</mml:mo> <mml:mi>d</mml:mi> <mml:mi>c</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> . At same time, unbounded conditions each solution are also given. The actually represents a kind physical phenomenon with non-conservation energy, but studied in paper one-dimensional damped oscillator constant variable sign damping coefficient under certain conditions. Therefore, it is great significance to study dynamic properties such system.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (30)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....