An effective strategy for ligand-mediated pulldown of the HER2/HER3/NRG1β heterocomplex and cryo-EM structure determination at low sample concentrations

Biochemistry & Molecular Biology Receptor, ErbB-3 Receptor, ErbB-2 Breast Neoplasms Ligands ErbB-2 Receptor tyrosine kinases ErbB-3 Breast Cancer erbB-3 2.1 Biological and endogenous factors Humans Aetiology Ligand binding erbB-2 Cancer Kinase activation Cryoelectron Microscopy Growth factor Signaling 3. Good health Protein purification Female Biochemistry and Cell Biology Cryo-electron microscopy Structural biology Receptor
DOI: 10.1016/bs.mie.2022.03.049 Publication Date: 2022-04-20T18:31:26Z
ABSTRACT
Obtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1β (NRG1β) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1β complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies. After overcoming significant hurdles in isolating sufficient amounts of the HER2/HER3/NRG1β complex for structural studies by cryo-electron microscopy (cryo-EM), we recently obtained the first high-resolution structures of the extracellular portion of this complex. Here we describe a step-by-step protocol for obtaining a stable and homogenous HER2/HER3/NRG1β complex for structural studies and our recommendation for collecting and processing cryo-EM data for this sample. We also show improved EM density for the transmembrane and kinase domains of the receptors, which continue to evade structural determination at high resolution. The discussed strategies are tunable and applicable to other membrane receptor complexes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (5)