The evolution of intergranular networks during grain growth and its effect on percolation behavior

Temporal evolution Percolation threshold 0103 physical sciences Triple junctions Three-dimensional microstructure X-ray synchrotron radiation 01 natural sciences
DOI: 10.1016/j.actamat.2024.119987 Publication Date: 2024-05-07T15:50:58Z
ABSTRACT
Triple junctions (TJs) are line defects in three-dimensional (3D) polycrystalline materials where three grains meet. Transport along the TJs depends on the connectivity between them. Here, we investigate the connectivity of more than 6000 TJs in a 3D microstructure of pure iron (Fe) through the lens of bond percolation. Our efforts are made possible by synchrotron-based x-ray diffraction tomography, which allows us to resolve the TJ network both temporally and spatially, during grain growth. In the framework of standard percolation theory, we determine a percolation threshold of the TJs, above which there exists a continuous pathway of TJs that travels infinitely far. Our experimental results indicate a surprisingly different percolation threshold (by 16%) compared to models and theories. The reason for the discrepancy is that the real TJ network has a topological disorder that is not present in the idealized microstructures considered in prevailing models and theories. Leveraging the wealth of time-resolved data we trace the origin of this disorder by following the topological transitions that accompany grain growth. Overall, the insights obtained in this study can help guide the design of polycrystalline materials via defect engineering.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (75)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....