Array-Based Gene Discovery with Three Unrelated Subjects Shows SCARB2/LIMP-2 Deficiency Causes Myoclonus Epilepsy and Glomerulosclerosis
0301 basic medicine
renal failure
572
Genotype
Genetic Linkage
Knockout
Clinical Sciences
Gene Expression
Genes, Recessive
Chromosomes
Scavenger
Cerebellar Cortex
Mice
03 medical and health sciences
Glomerulosclerosis
Glomerulonephritis
Progressive
Myoclonic Epilepsies
Receptors
616
Genetics
Recessive
Animals
Humans
genetics
Genetics(clinical)
myoclonus epilepsy
Oligonucleotide Array Sequence Analysis
Mice, Knockout
Receptors, Scavenger
0604 Genetics
Lysosome-Associated Membrane Glycoproteins
Chromosome Mapping
Myoclonic Epilepsies, Progressive
Lysosomal Membrane Proteins
Genes
Pair 4
SCARB2/LIMP-2
Action myoclonus-renal failure syndrome
epilepsy
Myoclonus epilepsy
action myoclonus-renal failure syndrome
Chromosomes, Human, Pair 4
glomerulosclerosis
Human
DOI:
10.1016/j.ajhg.2007.12.019
Publication Date:
2008-03-02T12:14:02Z
AUTHORS (26)
ABSTRACT
Action myoclonus-renal failure syndrome (AMRF) is an autosomal-recessive disorder with the remarkable combination of focal glomerulosclerosis, frequently with glomerular collapse, and progressive myoclonus epilepsy associated with storage material in the brain. Here, we employed a novel combination of molecular strategies to find the responsible gene and show its effects in an animal model. Utilizing only three unrelated affected individuals and their relatives, we used homozygosity mapping with single-nucleotide polymorphism chips to localize AMRF. We then used microarray-expression analysis to prioritize candidates prior to sequencing. The disorder was mapped to 4q13-21, and microarray-expression analysis identified SCARB2/Limp2, which encodes a lysosomal-membrane protein, as the likely candidate. Mutations in SCARB2/Limp2 were found in all three families used for mapping and subsequently confirmed in two other unrelated AMRF families. The mutations were associated with lack of SCARB2 protein. Reanalysis of an existing Limp2 knockout mouse showed intracellular inclusions in cerebral and cerebellar cortex, and the kidneys showed subtle glomerular changes. This study highlights that recessive genes can be identified with a very small number of subjects. The ancestral lysosomal-membrane protein SCARB2/LIMP-2 is responsible for AMRF. The heterogeneous pathology in the kidney and brain suggests that SCARB2/Limp2 has pleiotropic effects that may be relevant to understanding the pathogenesis of other forms of glomerulosclerosis or collapse and myoclonic epilepsies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (215)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....