Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution
Penetrance
DOI:
10.1016/j.ajhg.2017.10.007
Publication Date:
2017-12-07T17:35:27Z
AUTHORS (12)
ABSTRACT
A growing number of single-nucleotide polymorphisms (SNPs) have been associated with body mass index (BMI) and obesity, but whether the effects of these obesity-susceptibility loci are uniform across the BMI distribution remains unclear. We studied the effects of 37 BMI-associated SNPs in 75,230 adults of European ancestry across BMI percentiles by using conditional quantile regression (CQR) and meta-regression (MR) models. The effects of nine SNPs (24%)-rs1421085 (FTO; p = 8.69 × 10-15), rs6235 (PCSK1; p = 7.11 × 10-6), rs7903146 (TCF7L2; p = 9.60 × 10-6), rs11873305 (MC4R; p = 5.08 × 10-5), rs12617233 (FANCL; p = 5.30 × 10-5), rs11672660 (GIPR; p = 1.64 × 10-4), rs997295 (MAP2K5; p = 3.25 × 10-4), rs6499653 (FTO; p = 6.23 × 10-4), and rs3824755 (NT5C2; p = 7.90 × 10-4)-increased significantly across the sample BMI distribution. We showed that such increases stemmed from unadjusted gene interactions that enhanced the effects of SNPs in persons with a high BMI. When 125 height-associated SNPs were analyzed for comparison, only one (<1%), rs6219 (IGF1, p = 1.80 × 10-4), showed effects that varied significantly across height percentiles. Cumulative gene scores of these SNPs (GS-BMI and GS-height) showed that only GS-BMI had effects that increased significantly across the sample distribution (BMI: p = 7.03 × 10-37; height: p = 0.499). Overall, these findings underscore the importance of gene-gene and gene-environment interactions in shaping the genetic architecture of BMI and advance a method for detecting such interactions by using only the sample outcome distribution.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (97)
CITATIONS (62)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....