Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology 7. Clean energy
DOI: 10.1016/j.anucene.2018.08.047 Publication Date: 2018-09-05T06:48:46Z
ABSTRACT
Abstract A previously-reported concept of reactor cavity cooling system (RCCS) with passive safety features consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to efficiently remove the heat released from the reactor pressure vessel (RPV) through thermal radiation and natural convection. Employing air as a working fluid and ambient air as an ultimate heat sink, the novel RCCS design strongly reduces the possibility of losing the heat sink for decay-heat-removal during nuclear accidents including a station blackout. The RCCS could stably and passively remove the heat released from the RPV and the decay heat after reactor shutdown. The previously-reported heat-removal rate of the RCCS was approximately 3 (kW/m2). The heat flux from the RPV surface of the High Temperature engineering Test Reactor (HTTR) is almost in the same range; 1.23–2.46 (kW/m2). In this paper, the authors address an improvement of heat-removal capability by considering potential of heat leakage due to heat conduction through the RCCS wall aimed at increasing a thermal reactor power level. Under the assumption of doubling the RCCS wall heat transfer area, a heat-flux removed by the RCCS could be doubled, such as approximately 6.2 (kW/m2).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (10)
CITATIONS (7)