Thermodynamic performance of a novel solar tower aided coal-fired power system
13. Climate action
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
7. Clean energy
DOI:
10.1016/j.applthermaleng.2020.115127
Publication Date:
2020-02-25T11:56:38Z
AUTHORS (4)
ABSTRACT
Abstract In this paper, a novel solar tower aided coal-fired power (STACP) system is proposed by introducing a solar reheater. In this system, solar energy is used to reheat exhaust steam from an immediate turbine to improve the operating parameter of a regenerative cycle. The thermodynamic, environment, and economic performances of the STACP system in both power-boosting (PB) and fuel-saving (FS) modes are discussed and compared. Subsequently, the effects of reheat temperature and system power load are investigated. Results indicate that for a 300 MWe coal-fired unit, the solar energy used in the PB and FS modes are 81.82 and 71.69 MW, respectively. Compared with the coal-fired power system, the standard coal consumption rate of the STACP system in PB and FS modes can be reduced by 35.98 and 34.99 g/kWh, respectively, whereas the CO2 emission rate of the STACP system in PB and FS modes can be reduced by 101.79 and 98.99 g/kWh, respectively. The additional equipment cost of a solar field in PB and FS modes are 49.76 and 43.60 million US$, respectively. Moreover, the cost of electricity for power generated by solar energy for both modes is 3.37 US cents/kWh.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....