Enhanced performance of NiMoO4 nanoparticles and quantum dots and reduced nanohole graphene oxide hybrid for supercapacitor applications
Specific surface area
DOI:
10.1016/j.apsusc.2017.05.115
Publication Date:
2017-05-15T17:47:15Z
AUTHORS (3)
ABSTRACT
Abstract NiMoO4 nanoparticles and quantum dots were uniformly distributed on the surface of reduced nanohole graphene oxide (rNHGO). NiMoO4@rNHGO exhibited a higher specific capacitance and better cycling stability than NiMoO4@reduced graphene oxide (rGO), which were attributed to the large surface area and high electrical conductivity. NiMoO4 nanoparticles and quantum dots (QDs) had high surface to volume ratio, which would not result in change in volume during the electro–chemical operation and induced better supercapacitor performance. Moreover, synergistic effect between NiMoO4 and the rNHGO also improved undoubtedly high specific capacitance and cycle stability.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (25)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....