Tantalum-based nanotube arrays via porous-alumina-assisted electrodeposition from ionic liquid: Formation and electrical characterization
Tantalum pentoxide
Tantalum nitride
Microelectronics
Anodizing
DOI:
10.1016/j.apsusc.2021.149264
Publication Date:
2021-02-11T18:02:03Z
AUTHORS (6)
ABSTRACT
Abstract Fabrication of tantalum-based nanotube arrays was accomplished via porous anodic alumina (PAA) assisted electrodeposition (ED). The ED was performed through a PAA template from a conductive bottom face. Mechanically stable, free-standing and spatially-separated TaxOy-nanotubes were electrodeposited potentiostatically at −1.4 V vs. Pt with a high uniformity and population density across the sample surface. The electrolyte employed a room temperature ionic liquid ([BMP]Tf2N) as a solvent. Some impurities in the tantalum pentoxide nanotubes resulted from this selection of solvent. Additionally, some tantalum suboxides with valencies lower than 5 were present. Structural defects, oxygen vacancies and impurities were expected, which might account for the high leakage current of the TaxOy-nanotubes. The nanotubes resistivity was analyzed by the impedance spectroscopy. Based on the magnitude of resistivity and its thermal behavior we could classify the TaxOy material as semiconducting. Development of three-dimensional (3D) tantalum and tantalum oxide nanostructures is of particular interest for potential applications in microelectronic devices with high surface-to-volume ratios, e.g., metal–insulator-metal (MIM) storage capacitors, electrochemical sensors and switching microdevices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....