Dynamics in the Phobos environment
Libration (molecule)
Orbit (dynamics)
Eccentricity (behavior)
Orbital mechanics
Elliptic orbit
Celestial mechanics
Circular orbit
DOI:
10.1016/j.asr.2018.10.016
Publication Date:
2018-10-23T06:22:14Z
AUTHORS (4)
ABSTRACT
Abstract The dynamical environment on and about the Martian moon Phobos is explored. This planetary moon provides a unique dynamical environment in the solar system, being subject to extreme tidal forces and having a characteristically non-spherical shape. Further, it is not in a fully circular orbit, meaning that it has librations that arise from its eccentricity, contributing to a periodic forcing environment. Thus, to plan and implement missions in the vicinity of and on Phobos will require these considerations be taken into account. In this paper the latest published models of the Phobos shape and dynamics are used to characterize its dynamical environment in close proximity orbit about the body, for motion across its surface and for controlled hovering motion in its vicinity. It is found that surface motion is subject to a number of “speed limits” that can cause a moving vehicle to leave the surface and to possibly escape the moon and enter orbit about Mars. In terms of orbital stability, the existence of libration orbit families are characterized down to the surface using an exact potential, and the known stable QSO orbits are shown to be associated with families of stable quasi-periodic orbits.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (30)
CITATIONS (28)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....