Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization
0301 basic medicine
Dendrimers
Mice
Wound Healing
03 medical and health sciences
Lysine
Macrophages
Animals
Mannose
Diabetes Mellitus, Experimental
3. Good health
DOI:
10.1016/j.biomaterials.2021.121323
Publication Date:
2021-12-15T13:25:19Z
AUTHORS (10)
ABSTRACT
A large number of cytokines or growth factors have been used in the treatment of inflammation. However, they are highly dependent on an optimal delivery system with sufficient loading efficiency and protection of growth factors from proteolytic degradation. To develop the immunotherapy capacity of peptide dendrimers themselves, inspired by the structure and immunoregulatory functions of mannose-capped lipoarabinomannan (ManLAM), we thus propose a hypothesis that mannose-decorated globular lysine dendrimers (MGLDs) with precise molecular design can elicit anti-inflammatory activity through targeting and reprogramming macrophages to M2 phenotype. To achieve this, a series of mannose-decorated globular lysine dendrimers (MGLDs) was developed. Size-controlled MGLDs obtained were spherical with positive surface charges. The mean size ranged from 50-200 nm in varying generations and modification degrees. The initial screening study revealed that MGLDs have superior biocompatibility. When cocultured with MGLDs, mouse bone marrow-derived macrophages (BMDMs) acquired an anti-inflammatory M2 phenotype characterized by significant mannose receptor (MR) clustering on the cell surface and the elongated shape, an increased production of transforming growth factor (TGF)-β1, interleukin (IL)-4 and IL-10, a downregulated secretory of IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and increased ability to induce fibroblast proliferation. Then in vivo studies further demonstrated that topical administration of optimized MGLDs accelerates wound repair of full-thickness cutaneous defects in type 2 diabetic mice via M2 macrophage polarization. Mechanistically, MGLDs treatment showed an enhanced closure rate, collagen deposition, and angiogenesis, along with mitigated inflammation modulated by a suppressed secretory of pro-inflammation cytokines, and increased production of TGF-β1. These findings provide the first evidence that the bioinspired design of MGLDs can direct M2 macrophage polarization, which may be beneficial in the therapy of injuries and inflammation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (53)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....