Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms
Chromium
Potassium Compounds
Charcoal
0211 other engineering and technologies
Water
Adsorption
02 engineering and technology
Tetracycline
Decontamination
Iron Compounds
Water Pollutants, Chemical
DOI:
10.1016/j.biortech.2022.127407
Publication Date:
2022-06-04T00:53:55Z
AUTHORS (11)
ABSTRACT
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (53)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....