Metabolic and enzymatic engineering approach for the production of 2-phenylethanol in engineered Escherichia coli

Glucose Metabolic Engineering Carboxy-Lyases Escherichia coli Saccharomyces cerevisiae Phenylethyl Alcohol
DOI: 10.1016/j.biortech.2024.130927 Publication Date: 2024-06-01T15:25:00Z
ABSTRACT
2-Phenylethanol, known for its rose-like odor and antibacterial activity, is synthesized via exogenous phenylpyruvate by the sequential reaction of phenylpyruvate decarboxylase (PDC) and aldehyde reductase. We first targeted ARO10, a phenylpyruvate decarboxylase gene from Saccharomyces cerevisiae, and identified a suitable aldehyde reductase gene. Co-expression of ARO10 and yahK in E. coli transformants yielded 1.1 g/L of 2-phenylethanol in batch culture. We hypothesized that there might be a bottleneck in PDC activity. The computer-based enzyme evolution was utilized to enhance production. The introduction of an amino acid substitution in ARO10 (ARO10 I544W) stabilized the aromatic ring of the phenylpyruvate substrate, increasing 2-phenylethanol yield 4.1-fold compared to wild-type ARO10. Cultivation of ARO10 I544W-expressing E. coli produced 2.5 g/L of 2-phenylethanol with a yield from glucose of 0.16 g/g after 72 h. This approach represents a significant advancement, achieving the highest yield of 2-phenylethanol from glucose using microbes to date.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....