Fused aromatic networks as a new class of gas hydrate inhibitors
Clathrate hydrate
Moiety
Carbon fibers
Thermal Stability
Chemical Stability
DOI:
10.1016/j.cej.2021.133691
Publication Date:
2021-11-23T07:11:38Z
AUTHORS (8)
ABSTRACT
Abstract Fused aromatic networks (FANs) are attracting considerable interest in the scientific community because of their intriguing electronic properties and superior physiochemical stability due to their fully fused aromatic systems. Here, a three-dimensional (3D) cage-like organic network (3D-CON) and a vertical two-dimensional (2D) layered ladder structure (designated as V2D-BBL structure) were studied as materials for gas hydrate inhibitors because of their outstanding stability in high-pressure/low-temperature and periodically incorporated molecular building blocks. The V2D-BBL structure demonstrated remarkable performance, inhibiting the formation of both methane (CH4) and carbon dioxide (CO2) hydrates, comparable to conventional lactam-based polymers. It was determined that the designed perinone moiety in the V2D-BBL structure enables synergistic interactions with the host (water) and guest (CH4) molecules involved in hydrate nucleation. Given their pre-designability and inherent stability, the FANs hold enormous potential as gas hydrate inhibitors for industrial applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....