Dynamic RNA polymerase II occupancy drives differentiation of the intestine under the direction of HNF4

CP: Genomics 0301 basic medicine QH301-705.5 Cell Differentiation Article Intestines Mice 03 medical and health sciences Enhancer Elements, Genetic Hepatocyte Nuclear Factor 4 Animals CP: Molecular biology RNA Polymerase II Biology (General) Promoter Regions, Genetic
DOI: 10.1016/j.celrep.2024.114242 Publication Date: 2024-05-19T15:29:09Z
ABSTRACT
Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (94)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....