STCGRU: A hybrid model based on CNN and BiGRU for mild cognitive impairment diagnosis
DOI:
10.1016/j.cmpb.2024.108123
Publication Date:
2024-03-08T21:15:46Z
AUTHORS (7)
ABSTRACT
Early diagnosis of mild cognitive impairment (MCI) is one of the essential measures to prevent its further development into Alzheimer's disease (AD). In this paper, we propose a hybrid deep learning model for early diagnosis of MCI, called spatio-temporal convolutional gated recurrent unit network (STCGRU).The STCGRU comprises three bespoke convolutional neural network (CNN) modules and a bi-directional gated recurrent unit (BiGRU) module, which can effectively extract the spatial and temporal features of EEG and obtain excellent diagnostic results. We use a publicly available EEG dataset that has not undergone pre-processing to verify the robustness and accuracy of the model. Ablation experiments on STCGRU are conducted to showcase the individual performance improvement of each module.Compared with other state-of-the-art approaches using the same publicly available EEG dataset, the results show that STCGRU is more suitable for early diagnosis of MCI. After 10-fold cross-validation, the average classification accuracy of the hybrid model reached 99.95 %, while the average kappa value reached 0.9989.The experimental results show that the hybrid model proposed in this paper can directly extract compelling spatio-temporal features from the raw EEG data for classification. The STCGRU allows for accurate diagnosis of patients with MCI and has a high practical value.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....