Acoustic performance of epoxy-based composites incorporating fluorescent single-walled carbon nanotubes

Nanomaterials Sound transmission class Carbon fibers
DOI: 10.1016/j.compositesa.2023.107667 Publication Date: 2023-06-26T19:54:26Z
ABSTRACT
Noise pollution is a threat to health and well-being, and its prevalence has been increasing in recent years. Materials demonstrating sound-dampening capabilities, such as epoxy resins, have been widely used for reducing the noise burden, and the incorporation of nanomaterials can further improve their performance. Here, we incorporated fluorescent single-walled carbon nanotubes (SWCNTs) at various concentrations into epoxy resins and tested the acoustic performance of these nanocomposites over a wide frequency range. Comparing different SWCNT dispersants, DNA-SWCNT/epoxy composites resulted in the highest transmission loss, showing 18% improvement in sound-dampening compared to epoxy alone. Further, the transmission loss depended on the DNA-SWCNT concentration, with an optimal concentration of 2 mg L-1. Finally, the near-infrared fluorescence of the SWCNTs was used to characterize their distribution within the epoxy resin. Our results open new avenues for enhancing the acoustic performance of composites with carbon nanomaterials while utilizing their optical properties for material characterization.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (84)
CITATIONS (9)