State space formulation for composite beam-columns with partial interaction

02 engineering and technology 0201 civil engineering
DOI: 10.1016/j.compscitech.2006.12.013 Publication Date: 2007-01-16T19:38:55Z
ABSTRACT
Abstract A state space formulation is established for analyzing static responses of composite members with partial shear interaction under the combined action of an arbitrary transverse load and a constant axial force. Three generalized displacements (deflection, rotation angle, and interface slip) and three generalized forces (bending moment, shear force, and axial force) are combined into a state vector, which satisfies a state equation whose solution is easily obtained using matrix theory. The interfacial normal contact stress between the two subelements of a composite member is derived in order to check the validity of the basic assumption of identical deflection (or curvature) possessed by the two subelements. We find that, when a concentrated load alone acts on clamped–clamped or clamped–free beam-columns, tensile normal contact stress does appear at certain part of the interface. The formulation is then readily extended to analyze continuous composite beam-columns and inhomogeneous composite beam-columns. In particular, a non-continuous model of slip stiffness along the interface with discrete rectangular pulses is incorporated into the analysis, and the numerical results indicate a significant effect of slip stiffness ununiformity on the critical axial load as well as internal actions of the composite members.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (30)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....