Ultrasonic strength evaluation of underwater heterogeneous concrete using random forest model constrained by physical laws
Genetic algorithm
Particle swarm optimization
TA401-492
Compressive strength
Underwater
Materials of engineering and construction. Mechanics of materials
Ultrasonic testing
Random forest
DOI:
10.1016/j.cscm.2024.e04151
Publication Date:
2024-12-31T00:23:55Z
AUTHORS (3)
ABSTRACT
Compressive strength evaluation of concrete is crucial for the safety of underwater structures. However, the concrete heterogeneity impedes accurate evaluation based on empirical formulas (EF) derived from linear regression. This study proposes a four-phase model to formulate physical laws (PL). The concrete heterogeneity including sand-aggregate ratio (S/A), water-cement ratio (W/C), and diameter of average aggregate (Da), is considered along with the Rayleigh (R) and pressure (P) wave velocities. The proposed PLs are used to constrain the fitness functions of Particle Swarm (PS) optimization and Genetic Algorithms (GA), and the Random Forest (RF) model is enhanced to PL-PS-RF and PL-GA-RF models. Ultrasonic and compressive tests are performed on 96 specimens with 32 different mix parameters to train the models. The maximum error significantly decreases from 20 MPa to 5 MPa with the PL-PS-RF model. Parameter analysis reveals the mechanisms behind the improvements. The proposed methodology improves the evaluation accuracy and the testing is extended from an aerial to an underwater environment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....