Role for Visual Experience in the Development of Direction-Selective Circuits
Male
Retinal Ganglion Cells
0301 basic medicine
Biomedical and clinical sciences
Vision
Biological Psychology
Eye
Inbred C57BL
Medical and Health Sciences
Mice
Motion
03 medical and health sciences
Ocular
Psychology
Animals
[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Eye Disease and Disorders of Vision
Vision, Ocular
0303 health sciences
Psychology and Cognitive Sciences
Neurosciences
Biological Sciences
Mice, Inbred C57BL
Biological sciences
Visual Perception
Female
Developmental Biology
DOI:
10.1016/j.cub.2016.03.073
Publication Date:
2016-05-06T00:22:28Z
AUTHORS (3)
ABSTRACT
Visually guided behavior can depend critically on detecting the direction of object movement. This computation is first performed in the retina where direction is encoded by direction-selective ganglion cells (DSGCs) that respond strongly to an object moving in the preferred direction and weakly to an object moving in the opposite, or null, direction (reviewed in [1]). DSGCs come in multiple types that are classified based on their morphologies, response properties, and targets in the brain. This study focuses on two types-ON and ON-OFF DSGCs. Though animals can sense motion in all directions, the preferred directions of DSGCs in adult retina cluster along distinct directions that we refer to as the cardinal axes. ON DSGCs have three cardinal axes-temporal, ventral, and dorsonasal-while ON-OFF DSGCs have four-nasal, temporal, dorsal, and ventral. How these preferred directions emerge during development is still not understood. Several studies have demonstrated that ON [2] and ON-OFF DSGCs are well tuned at eye-opening, and even a few days prior to eye-opening, in rabbits [3], rats [4], and mice [5-8], suggesting that visual experience is not required to produce direction-selective tuning. However, here we show that at eye-opening the preferred directions of both ON and ON-OFF DSGCs are diffusely distributed and that visual deprivation prevents the preferred directions from clustering along the cardinal axes. Our findings indicate a critical role for visual experience in shaping responses in the retina.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....