Lysosomal dynamics regulate mammalian cortical neurogenesis

Neurons Mammals Mice Neural Stem Cells Neurogenesis Animals Humans Mitosis Neocortex Lysosomes
DOI: 10.1016/j.devcel.2023.11.021 Publication Date: 2023-12-15T16:17:55Z
ABSTRACT
Mammalian neocortex formation follows a stereotypical pattern wherein the self-renew and differentiation of neural stem cells are coordinated with diverse organelle dynamics. However, the role of lysosomes in brain development has long been overlooked. Here, we demonstrate the highly dynamic lysosomal quantities, types, and localizations in developing brain. We observed asymmetric endolysosome inheritance during radial glial cell (RGC) division and the increased autolysosomes within intermediate progenitor cells (IPs) and newborn neurons. Disruption of lysosomal function shortens the S phase of the cell cycle and promotes RGC differentiation. Mechanistically, we revealed a post-transcriptional regulation governing ribosome homeostasis and cell-cycle progression through differential lysosomal activity modulation. In the human forebrain organoid, lysosomal dynamics are conserved; specifically, during the mitosis of outer subventricular zone RGCs (oRGs), lysosomes are inherited by the progeny without basal process. Together, our results identify the critical role of lysosomal dynamics in regulating mouse and human brain development.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....