Quantitative proteomic dataset of the moss Physcomitrium patens SMG1 KO mutant line

Proteomics 0301 basic medicine Q1-390 0303 health sciences 03 medical and health sciences Nonsense-mediated RNA decay Science (General) iTRAQ Physcomitrium patens Computer applications to medicine. Medical informatics R858-859.7 Data Article
DOI: 10.1016/j.dib.2021.107706 Publication Date: 2021-12-11T23:48:39Z
ABSTRACT
Nonsense-mediated RNA decay (NMD) mechanism controls the quality of eukaryotic mRNAs by degradation of aberrant transcripts with a premature stop codon (PTC) in a pioneer round of translation. Besides aberrant transcripts, up to 10% of normal mRNA transcripts can be regulated by NMD. As NMD machinery is associated with translation, this system takes part in proteome formation in eukaryotic cells [1,2]. However, no proteomic datasets of plants with deficient NMD system are currently available. Here, we provide an isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic dataset of the moss Physcomitrium patens smg1 knockout line. The kinase SMG1 is one of the key components of the NMD system in many organisms, including plants. 8-day old protonema of wild type and mutant lines was used for the iTRAQ experiment in three biological replicates. LC-MS/MS data were processed using PEAKS Studio v.8 Software with protein identification based on a Phytozome protein database. Differentially expressed protein groups up- and down-regulated in the smg1 knockout line were found in the resulting dataset. Presented data can improve our understanding of NMD functions in plants.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (12)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....