Inhibition of cystathionine gamma-lyase and the biosynthesis of endogenous hydrogen sulphide ameliorates gentamicin-induced nephrotoxicity
Inflammation
0301 basic medicine
Cystathionine gamma-Lyase
Glycine
610
Sulfides
620
Anti-Bacterial Agents
Rats
3. Good health
Rats, Sprague-Dawley
Necrosis
03 medical and health sciences
Alkynes
Animals
Female
Kidney Diseases
Hydrogen Sulfide
Lipid Peroxidation
Gentamicins
DOI:
10.1016/j.ejphar.2012.04.030
Publication Date:
2012-04-21T22:17:33Z
AUTHORS (4)
ABSTRACT
Clinical use of gentamicin over prolonged periods is limited because of dose- and time-dependent nephrotoxicity. Primarily, lysosomal phospholipidosis, intracellular oxidative stress and heightened inflammation have been implicated. Hydrogen sulphide is an endogenously produced signal transduction molecule with strong anti-inflammatory, anti-apoptotic and cytoprotective properties. In several models of inflammatory disease however, tissue damage has been associated with increased activity of cystathionine gamma-lyase, biosynthesis of hydrogen sulphide and activation of leukocytes. The aim of this study was to determine effects of inhibiting hydrogen sulphide biosynthesis by DL-propargyl glycine (an irreversible inhibitor of cystathionine gamma-lyase) on inflammation, necrosis and renal function, following treatment with gentamicin in rats. Adult female Sprague-Dawley rats were divided into six groups and treated with; physiological saline, sodium hydrosulphide, DL-propargyl glycine, gentamicin, a combination of gentamicin and sodium hydrosulphide, or gentamicin and DL-propargyl glycine respectively. Gentamicin-induced histopathological changes including inflammatory cell infiltration and tubular necrosis were attenuated by co-administering gentamicin with DL-propargyl glycine (P<0.05 compared to saline controls and P<0.05 compared to gentamicin only). Similarly, DL-propargyl glycine caused a significant reduction (P<0.05) in lipid peroxidation, production of superoxide and the activation of tumour necrosis factor-alpha in gentamicin-treated animals. These data show that protective effects of DL-propargyl glycine might be related at least in part, to the reduced inflammatory responses observed in animals treated with both gentamicin and DL-propargyl glycine. Thus, enzyme systems involved in hydrogen sulphide biosynthesis may offer a viable therapeutic target in alleviating the nephrotoxic effects of gentamicin.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (23)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....