A novel 1-((3-(2-toluyl)-4,5-dihydroisoxazol-5-yl)methyl)-4-(trifluoromethyl)pyrimidin-2(1H)-one activates intrinsic mitochondria-dependent pathway and decreases angiogenesis in PC-3 cells

Male Membrane Potential, Mitochondrial 0303 health sciences Neovascularization, Pathologic Down-Regulation Prostatic Neoplasms Angiogenesis Inhibitors Apoptosis Ataxia Telangiectasia Mutated Proteins Pyrimidinones Mitochondria 3. Good health G2 Phase Cell Cycle Checkpoints Histones 03 medical and health sciences PC-3 Cells Humans Lipid Peroxidation Phosphorylation Topoisomerase I Inhibitors Reactive Oxygen Species DNA Damage Signal Transduction
DOI: 10.1016/j.ejphar.2021.174028 Publication Date: 2021-03-13T20:23:36Z
ABSTRACT
Prostate cancer is among the most common cancer diagnoses in men, and the best treatment for patients with metastatic disease in advanced stages is still unclear. Previously, we have demonstrated that the three 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2- ones derivatives (8a, 8e and 9c) present important cytotoxicity and selectivity for tumoral cells. Considering that various cytotoxic drugs have been assessed in patients with prostate cancer, but few drugs show survival advantage, we decided to study these three compounds (8a, 8e and 9c) in prostate cancer cells, androgen receptor (AR)-positive 22Rv-1 and AR-negative PC-3 cells. We obtained the half maximal inhibitory concentration (IC50) of 8a, 8e and 9c in prostate cancer cells and based on high selectivity of 9c to PC-3 cells, we determined the mechanism of this compound to induce cell death through different methods. We show here that 9c compound induces cell cycle arrest in G2/M, increasing the levels of reactive oxygen species and DNA damage, and triggers DNA damage response by ataxia-telangiectasia mutated (ATM) and histone H2AX phosphorylation induction. The compound also led PC-3 to lipid peroxidation and mitochondrial depolarization which triggered the activation of intrinsic pathway, confirmed by increase of cleaved caspase-9 and 3. In this work we also show the ability of 9c in reducing vascular endothelial growth factor expression (VEGF) and inhibiting topoisomerase I enzyme, therefore indicating a potential new molecule to be further investigated for prostate cancer management.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (1)