Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system
13. Climate action
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
7. Clean energy
DOI:
10.1016/j.enconman.2014.03.060
Publication Date:
2014-04-18T01:36:22Z
AUTHORS (2)
ABSTRACT
Abstract In this paper, exergy analysis of a combined reheat regenerative steam turbine (ST) based power cycle and water–LiBr vapor absorption refrigeration system (VARS) is presented. Exergetic efficiency of the power cycle and VARS, energy utilization factor (EUF) of the combined system (CS) and irreversibility in each system component are calculated. The effect of fuel flow rate, boiler pressure, cooling capacity and VARS components’ temperature on performance, component and total system irreversibility is analyzed. The second law based results indicate optimum performance at 150 bar boiler pressure and VARS generator, condenser, evaporator and absorber temperature of 80 °C, 37.5 °C, 15 °C and 35 °C respectively. The present exergy based results conform well to the first law based results obtained in a previous analysis done on the same combined system. Irreversibility distribution among various power cycle components shows the highest irreversibility in the cooling tower. Irreversibility of the exhaust flue gas leaving the boiler and the boiler are the next major contributors. Among the VARS components, exergy destruction in the generator is the highest followed by irreversibility contribution of the absorber, condenser and the evaporator.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (38)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....